UNLEASH THE POWER OF LIMITLESS CONNECTIVITY
Operational Transformation

Helm: Self-Service Customer Data Platform

Sriharsha Gangam
Principal Architect
Comcast Cable
Agenda

- Why Customer Data Platforms (CDPs)?
- Helm Introduction – A CDP at Comcast
- Design Goals and Architecture Overview
- Self-Service for Managing Helm
- Applications Aiding Customer Experiences
- Conclusions: Helm Journey and Evolution
Why Customer Data Platforms?

Customer Experiences

• Critical for Businesses
 • Increasingly Data driven – serve millions of customers
 • Need to be Holistic – empathize customers

• Common Data Driven Challenges
 • Disparate sources (esp. large organizations)
 • Scaling: variety, volume, and churn
 • One-off ETL (extract, transform, load) data pipelines
 • Governance and domain expertise

Customer Data Platform (CDP)

Unify, Enrich & Store

Data Collection from disparate sources

Data Activation

Customer Interactions

© 2021 SCTE®, CableLabs & NCTA. All rights reserved. | expo.scte.org
Background

• Built to understand customer journeys across all products and channels
 • Started as a Proof of Concept/Lab week project in 2012
• Common Use-Cases & Applications
 • Customer Support - Care Agents
 • Product Rollouts - Data Analysts, Business owners
 • NPS callback Program – Employees
• Self-Serve: Decentralized Data Management & Governance (Publish & Access)

Current Scale

• Billions of Monthly Interactions
 • Millions of customers
• Hundreds of Dataset types
 • Multiple domains
• Thousands of Employees (users)
 • Billions of monthly API calls

Comcast collects, stores, and uses all data in accordance with our privacy disclosures to users and applicable laws
Helm CDP

Building Blocks

- Helm CDP
 - Ingest Foundations
 - Data Activation Applications
 - Self-Service

- Integrations
 - Success
 - Operations
 - Data
Design Goals and Architecture Overview

Design Goals

- Metadata Driven
 - Domain Agnostic & Multi-Tenant Capable
 - Self-service data onboarding

- Democratized Observability
 - Quality, Availability, Notifications

- Near Real-time Streaming with High-Fidelity

- Cloud Infrastructure & Performance Isolation
 - Privacy and security by design

Example Helm Data Model
Design Goals and Architecture Overview

Ingestion
- Batch Sources
- Real-time Sources
- Streaming Sources
- Ingestion Adapters: Batch (AWS Lambda, EMR), HTTP's Gateway (AWS Beanstalk), Kinesis/ Kafka Bridge (Flink)
- Staging area (AWS S3), Staging area (AWS S3)
- Ingestion Library

Routing
- Event Bus (AWS Kinesis)
- Routing (AWS Lambda)
- Batch, Aggregate, Sessionize, Evaluate Rules

Transform/Persist
- Enrich, Store
- Helm Data Stores: Profile Search DB (ElasticSearch), Document Store (DynamoDB), Profile Graph DB (AWS Neptune), Historical Store/Data Lake (AWS S3)

Services/APIs
- Data Activation (API/UI): Profile Search & Navigation, 360° Visualization, Journeys & Actions, Watchlist, Talk, External Services
- BI Analysts, Employees & Care-Agents

Self-Service
- Self-service UI: HTTPs API & UI (AWS Beanstalk)
- Orchestration Workflows (AWS Step Functions): Ingestion, Infrastructure, Application Specific orch., Access Control, Operations & Observability
- High-performance Metadata store: Metadata Store for Data Plane (AWS DynamoDB)
- Metadata Integrations: collibra, Amazon Glue
Metadata Configurations

- Data Source Metadata
 - Credentials, Schema, Documentation
 - Preparation: Normalization, Encryption
- Routing, Persistence & Data Access
 - Retention and data lifecycle
 - Access controls: ABAC/RBAC
- Application Specific
 - Visualization, Sessionize, Batch
 - Rules, Aggregate, Enrich
Data Source & Transformation Metadata - Tags

- Incoming feed schema
 - Field types (JSON Schema)
- Profile type
 - Profile id and timestamp fields
 - JSON Paths
- Encryption Security
 - JSON Paths
- Field Descriptions
- Labels and Icons
- UI/Visualization
Helm Applications

- Complementary & Data Re-use
- 360° Visualization
 - Lifetime view of customer events
 - Flagship Application
Applications Aiding Customer Experiences

360° Visualization

- Chronological, “Lifetime” customer view
- Range Selector (black)
- Swim lanes per category
- Filters to hide irrelevant events
- Backed by Helm Events API
Other Helm Applications

- Talk
 - NPS callbacks
 - Customer Conversations
- Journeys & Actions
 - State machines & notifications
- Analytics
 - Metrics & distributions
Platform Evolution

- Past: Bespoke Pipelines for 360° Visualizations
 - Hard to scale and manage
 - Self-Service capabilities

- Current/Near-Future: Self-Service for Data Onboarding/Application Metadata
 - Increased complexity of Self-Service
 - Decouple metadata orchestrations

- Future: Multi-Tenancy Support
 - Current approach: New Helm instance per Tenant
Conclusions

• Helm CDP and its role at Comcast
 • Design principles, architecture overview and Journey

• Self-Serve Governance & Data Management
 • Democratized, decentralized
 • Trade-off: Freq. Configuration changes Vs. Effort to build self-serve capabilities

• Modular Applications (e.g., 360° Visualization, Analytics)
 • Complementary and re-use data
Thank You!

Sriharsha Gangam
Principal Architect,
Comcast Cable,
1800 Arch St, Philadelphia, PA 19103