UNLEASH THE POWER OF LIMITLESS CONNECTIVITY
Converged Networks and Mobility

On The Road to 10G - Converged Access Platform for HFC & Ultra Long (+60km) NGPON2

Harj Ghuman
Principal Strategic Access Architect
COX Communications
Acknowledgements

ADVA: Clark Scott, Lutz Rapp, Sorin Tibuleac
COX: Sung Kim, Igor Tavrovsky, Ted Boone, Brian Yarbrough
Agenda

Converged Access Platform ROCML & Drivers
Data Projections
ROCML Overview
COX PON Architecture
Future 25G PON With ROCML
DOCSIS 4.0 & FTTH Network
What is the ROCML

ROCML – Raman Optical Comm. Module
Single platform for HFC, PON & 5G
Passive OSP, active components in CO
Raman, SOA and EDFA amplification
Fiber protection
Dispersion management

Drivers

Extended range +60km 10G PON2
- Scalable to 25G PON & beyond
25Gbps DWDM optical link for ESD 1.8GHz
Primary & backup fiber links
High system OSNR platform
Coherent Capability 100G-400G
20 Year Data Projections

Downstream

YoY traffic CAGR 25-30%
Max speed: Half node/link capacity

HFC D4.0 (ESD 1.8 GHz)
- Up to 12 Gbps DS/6 Gbps UP
- 350 HP/node
- 200 subs/node

PON
- 10Gbps symmetrical
- 64 HP/link
- 40 subs/link
Raman Optical Communications Module (ROCML)

COX's Next Generation Converged Access Platform

Loss Budgets: PON 50dB, Ethernet 35dB

5 to 70km

Primary

Secondary

OLT 10G- PON, 1

MUX

C Band

D Band

WDM

Dispersion Management

Ethernet DS

C Band EDFA

NGPON2 DS

DS

20 DS CHs

25G 100/400G

20 US CHs

NGPON2 UP

Raman Pump

2 x 1 Splitter

25G

RMD

100/400G

1:64 PON (Future 25G PON)

1: 64 PON

10G PON

25G

RMDM

C/L Band

D WDM

OTDR

Primary

Secondary

OTDR

Coherent
Ethernet & PON Transport

8 NGPON2 PtP Wavelengths
- **L band DS**
- **C Band UP**

20 Bi-Di Ethernet Wavelengths
- **C band DS/UP**

<table>
<thead>
<tr>
<th>Pair</th>
<th>ITU</th>
<th>Downstream Wavelength</th>
<th>ITU</th>
<th>Upstream Wavelength</th>
<th>Pair</th>
<th>Downstream Wavelength</th>
<th>ITU</th>
<th>Upstream Wavelength</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>14</td>
<td>1566.31</td>
<td>38</td>
<td>1546.92</td>
<td>71</td>
<td>1602.31</td>
<td>55</td>
<td>1533.47</td>
</tr>
<tr>
<td>2</td>
<td>15</td>
<td>1565.5</td>
<td>39</td>
<td>1546.12</td>
<td>72</td>
<td>1601.46</td>
<td>56</td>
<td>1532.68</td>
</tr>
<tr>
<td>3</td>
<td>16</td>
<td>1564.68</td>
<td>40</td>
<td>1545.32</td>
<td>73</td>
<td>1600.6</td>
<td>57</td>
<td>1531.9</td>
</tr>
<tr>
<td>4</td>
<td>17</td>
<td>1563.86</td>
<td>41</td>
<td>1544.53</td>
<td>74</td>
<td>1599.75</td>
<td>58</td>
<td>1531.12</td>
</tr>
<tr>
<td>5</td>
<td>18</td>
<td>1563.05</td>
<td>42</td>
<td>1543.73</td>
<td>75</td>
<td>1598.89</td>
<td>59</td>
<td>1530.33</td>
</tr>
<tr>
<td>6</td>
<td>19</td>
<td>1562.23</td>
<td>43</td>
<td>1542.94</td>
<td>76</td>
<td>1598.04</td>
<td>60</td>
<td>1529.55</td>
</tr>
<tr>
<td>7</td>
<td>20</td>
<td>1561.42</td>
<td>44</td>
<td>1542.14</td>
<td>77</td>
<td>1597.19</td>
<td>61</td>
<td>1528.77</td>
</tr>
<tr>
<td>8</td>
<td>21</td>
<td>1560.61</td>
<td>45</td>
<td>1541.35</td>
<td>78</td>
<td>1596.34</td>
<td>62</td>
<td>1527.99</td>
</tr>
<tr>
<td>9</td>
<td>22</td>
<td>1559.79</td>
<td>46</td>
<td>1540.56</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>23</td>
<td>1558.98</td>
<td>47</td>
<td>1539.77</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>24</td>
<td>1558.17</td>
<td>48</td>
<td>1538.98</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>25</td>
<td>1557.36</td>
<td>49</td>
<td>1538.19</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>26</td>
<td>1556.56</td>
<td>50</td>
<td>1537.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>27</td>
<td>1555.75</td>
<td>51</td>
<td>1536.61</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>28</td>
<td>1554.94</td>
<td>52</td>
<td>1535.82</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>29</td>
<td>1554.13</td>
<td>53</td>
<td>1535.04</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>30</td>
<td>1553.33</td>
<td>54</td>
<td>1550.12</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>31</td>
<td>1552.52</td>
<td>55</td>
<td>1549.32</td>
<td>79</td>
<td>1595.2</td>
<td>63</td>
<td>1526.99</td>
</tr>
<tr>
<td>19</td>
<td>32</td>
<td>1551.72</td>
<td>56</td>
<td>1548.52</td>
<td>80</td>
<td>1594.4</td>
<td>64</td>
<td>1526.11</td>
</tr>
<tr>
<td>20</td>
<td>33</td>
<td>1550.92</td>
<td>57</td>
<td>1547.72</td>
<td>81</td>
<td>1593.6</td>
<td>65</td>
<td>1525.33</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>82</td>
<td>1592.8</td>
<td>66</td>
<td>1524.55</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>83</td>
<td>1592.0</td>
<td>67</td>
<td>1523.77</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>84</td>
<td>1591.3</td>
<td>68</td>
<td>1522.99</td>
</tr>
</tbody>
</table>

NGPON2 L Band DS

NGPON2 C Band UP

© 2021 SCTE®, CableLabs & NCTA. All rights reserved. | expo.scte.org
Raman Amplification in ROCML

ADVA 70km Simulations

C band UP Gain
- NGPON2 21dB
- Ethernet 18dB

DS Gain
- NGPON2 L Band 5 dB
- Ethernet C Band 7.5dB
Current and Proposed 10G PON Architecture

Current COX 10G PON

ROCML 10G PON

Same Fiber Distribution Network
Future 25G PON With ROCML

25GS-PON

- 25G OLT
 - 25G Tx
 - 25G Rx
- ODN
 - 29 dB loss
- 25G symmetric ONU
 - 25G Tx
 - 25G Rx

- 29dB Loss budget
- 20km
- 0-band single wavelength
- NRZ transmission
- Low cost DML lasers in ONUs
- No dispersion compensation
- No optical amplification

25G PON over ROCML

- 25G OLT
 - 25G Tx
 - 25G Rx
- ODN
 - ROCML
 - RMDM
 - 50 dB loss
- 25G symmetric ONU
 - 25G Tx
 - 25G Rx

- 50dB Loss budget
- +60km
- L/C Band multiwavelength, 8 X 25G
- NRZ transmission
- Low cost DML lasers in ONUs
- Dispersion compensation
- Optical amplification

© 2021 SCTE®, CableLabs & NCTA. All rights reserved. | expo.scte.org
DOCSIS 4.0 ESD (1.8GHz)

- Backbone
- Metro
- Regional Data Center
- Virtual Controller
- ROCML, RPAs, OTDR
- HUB
- Fiber (5-70km)
- Coax (1-2km)
- 1.8 RMD 35k
- 1.8 Amp. 600k
- 1.8 Taps 3M
- SUBSCRIBER

Access
25G DWDM Network

UHS DOCSIS 4.0 Upgrades
Nodes, Amps and Taps
CIN, OCMLs, RPAs, vCMTS
D4.0 CPE

DATA CENTER

© 2021 SCTE®, CableLabs & NCTA. All rights reserved. | expo.scte.org
FTTH – ROCML PON Network

Backbone

Metro

DATA CENTER

Fiber (5-70km)

Distribution Fiber
(1-5km)

Access
C/L Band 10G/25G DWDM

HUB

FTTH Upgrades
Fiber to homes
CIN, ROCMLs, RPAs, OLTs
ONU

Less Hardware
No field actives, Increased
Reliability, Reduced OpEx

© 2021 SCTE®, CableLabs & NCTA. All rights reserved. | expo.scte.org
Summary

ROCML Provides Access platform for 20 Years

Single DOCIS, PON, 5G & enterprise platform
Protected fibers
25G DWDM ethernet links for RMD
Long range +60km 10G PON, scalable to 25G PON
Coherent 400G capability

ROCML enables transition to all PON network
Thank You!

Harj Ghuman
Principal Strategic Access Architect
Cox Communications
Harj.ghuman@cox.com